High resolution NMR microscopy of plants and fungi.
نویسندگان
چکیده
Nuclear magnetic resonance (NMR) microscopy is a completely noninvasive technique that can be used to acquire images with high spatial resolution through opaque objects such as plant organs and tissue parts. The image contrast can be chosen to represent the anatomical details or to visualize the spatial distribution of a range of physico-chemical parameters such as the apparent diffusion constant of water or the velocity of water flow within plants in vivo. In addition, images can be generated which show the spatial distribution of metabolites. Furthermore, it is possible to detect chemical compounds labelled with the stable isotope (13)C and to generate images showing the spatial distribution of the (13)C label in the intact plant. The ability to monitor water flow and transport of (13)C-labelled tracer in intact plants with NMR microscopy favours the use of this technique in the investigation of long-distance transport processes in plants. A short introduction into the technical principles of NMR microscopy is provided and the problems associated with applications to plants are summarized. The potential of the technique is explained with applications to Zinnia elegans plants, wheat grains and Brassica napus siliques.
منابع مشابه
Structure elucidation and chemistry of novel diterpenoids from Euphorbia plants of Iran
Plants of the genus Euphorbia have been investigated for different bioactive natural products. I have isolated several new and bioactive diterpenoids from different species of Euphorbia of Iran with myrsinane type skeleton. The structure of the compounds was determined using high resolution mass spectroscopy, 1 D and 2 D NMR spectral data. The stereochemistry of the diterpenoids was determined ...
متن کاملStructure elucidation and chemistry of novel diterpenoids from Euphorbia plants of Iran
Plants of the genus Euphorbia have been investigated for different bioactive natural products. I have isolated several new and bioactive diterpenoids from different species of Euphorbia of Iran with myrsinane type skeleton. The structure of the compounds was determined using high resolution mass spectroscopy, 1 D and 2 D NMR spectral data. The stereochemistry of the diterpenoids was determined ...
متن کاملHigh Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)
In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...
متن کاملPlant sterols in "rafts": a better way to regulate membrane thermal shocks.
Specialized lipid domains (rafts) that are generally enriched in sterols and sphingolipids, are most likely present in cell membranes of animals, plants and fungi. While cholesterol and ergosterol are predominant in vertebrates and fungi, plants possess complex sterol profiles, dominated by sitosterol and stigmasterol in Arabidopsis thaliana. Fully hydrated model membranes of composition approa...
متن کاملAntioxidant and antimicrobial medicinal plants from Iran
The Objective of this research was determination of antioxidant and antimicrobial activities of different plants of the families lamiaceae including several salvia species and some plants of the family Compositae e.g. Onopordon, Centaurea from Iran. The radical scavenging activities of the above-mentioned plants were measured spectrophotometrically using DPPH (2, 2 dipheny-pycryl-hydrazyl). The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of microscopy
دوره 214 Pt 2 شماره
صفحات -
تاریخ انتشار 2004